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Abstract. In situ deprotonation of 2-methyl, 2-chloromethyl-, 2-trimethylsilylmethyl-, and 2-methoxymethoxy-
substitnted allyl chlorides generates allyl carbenoids which insert into zirconacyclopentanes to afford allyl
zirconocenes. Allyl bromides, p-toluenesulphonates, or N,N-diisopropylcarbamates may also be used. The allyl
zirconocenes undergo further reaction with aldehydes / BF5.Et,O or ketones to give oxazirconacycles which may be
protonated, halogenated, or oxygenated to afford organic products.

A wide variety of zirconacycles are available by convergent routes from simple organic precursors!, and have
great potential as intermediates in organic synthesis. The development of methods for productively elabo-
rating the carbon-zirconium bonds in these zirconacycles is crucial?. We recently reported’ the tandem inser-
tion: of lithium chloroallylide and aldehydes or ketones into saturated bicyclic zirconacycles e.g. 3 and 4,
(readily obtained by co-cyclisation of 1,6-dicnes using the ‘Negishi reagent’ dibutylzirconocene?) to give
elaborated cyclopentanes such as 10 and 11 (R'=H) on aqueous work up. The overall process comprises a four
component coupling (as the alkenes need not be linked) in which the metal is used as a template upon which
the organic fragments arc assembled. To establish this as a generally useful synthetic method we need 10
demonstrate that each component can be varied widely. In this communication we report our attempts to vary
the key component - the allyl carbenoid. We also demonstrate that the final carbon-zirconium bond may be
successfully functionalised by halogenation and oxygenation.

Variation ir. the leaving group. For successful insertion two properties are required of the allyl carbenoid 5.
The anion must be nucleophilic enough (o form the ‘ate’ complex 6, and X must be a good leaving group for
the rearrangement 6 - 7 to occur. This combination of properties make § very unstable, a problem which is
somewhat alleviated by its generation in situ. The insertion of simple allyl carbenoids 5° carrying a variety of
groups X was attempted in order 1o establish the limits of these criteria (Table 1), When deprotonated in situ
with lithium diisopropylamide (LDA) allyl bromide was as efficient as allyl chloride in the insertion reaction.
Pleasingly metallated allyl p-toluenesulphonate and allyl N,N-diisopropylcarbamaie® also gave quantitative
conversion to the allyl complex 7a and 71-76% yields of the isolated protonated products? 9a. The easy
formation of p-toluenesulphonates and N,N-diisopropylcarbamates from allylic alcohols make them attractive
reagents. Allyl phenyl ether and allyl ethyl ether gave signs of success (Table 1) but allyl phenyl sulphide,
ailyl phenyl sulphone, and allyl triphenylphosphonium bromide failed to insert when deprotonated in situ with
LDA. n-BulLi or s-BuLi / N,N,N'N"tetramethylethylenediamine (TMEDA),
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Scheme 1. -A- = -CH,0C(Me,)OCH,-

2-Substituted allyl component. The successful insertion of lithiated methallyl chloride 5b into 3 and 4 to
afford 7b and 8b8 (Scheme 1) demonstrates that simple 2-substitvents are tolerated. Subsequent benzaldehyde
/ BF3. ELyO insertion into 8b and acetone insertion into 7b afforded 10b and 11b respectively on aqueous
work-up. It is remarkable that the stereochemistry of the trisubstituted alkene is reversed in the formation of
these two products, in particular the Z stereochemistry of 11b is unprecedented®-10:11, Protonation of 7b
afforded the alkene 9b. Work-up with MeOD gave >90% deuteration of the ‘cis’ methyl (8. 17.90 p.p.m.)
rather than the ‘trans' (8 25.93 pp.m.).

For the synthesis of polycyclic targets the incorporation of allyl components which may be later elabo-
rated is important. This was accomplished by the insertion of lithiated Z-mmcmylsilylmemyl-u and 2-
chloromethyl- allyl chlorides Sc and d to give 7¢,d and 8d, and hence the organic products 9¢,d, 10d, and 11c
(Scheme 1). These contain potentially nucleophilic (allyl silane) or electrophilic (allyl chloride) moieties for
further elaboration.

2-Heteroatom substituted systems were examined next, Lithiated 2-methoxymethoxy allyl chioride!3
gave the expected allyl complexes 7¢ and 8e and hence the final organic compounds 9e and 11e containing a
protected ketone moiety.

3-Substituted allyl component  Attempts to insert 3-substituted allyl systems into 3 proved difficult. Under in
sinu lithiation conditions (LDA) croty] chloride (4: 1 E : Z) gave only 20% insertion, a situation which was
not improved by using 5 equivalents of the reagent. Pure (Z)-1-chloro-2-pentene gave a similar result indi-
cating that the geometry of the double bond was not critical. 1-Chloro-3-methyl-2-butene gave no insertion
product suggesting that one problem may be 1,4-climination of hydrogen chloride in these systems. With 1.2-
equivalents of cinnamyl bromide / LDA all the starting zirconacycle 3 reacted, but the resulting allyl zircono-
cene was much less clean than usnal (estimated 50% yield from NMR). For the rearrangement 6 - 7 to occur
the allyl systern must bind to the zirconium through the same carbon as the leaving group (as in 6). With 1,3-
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dichloropropene as the substrate this requirement is always met, but still only 25% insertion was obtained.

Allyl carbamales are efficiently lithiated at the a-position through ‘proximity induced” degrotonation, and
the anions are relatively stableS. We were delighted to find that addition of s-BuLi (1.3 eq.) and TMEDA (1.2
eq) to a mixture of the zirconacycles 3 or 4 and crotyl N,N-diisopropylcarbamate® (1.3 eq) in THF at -78°C
gave quantitative conversion to the allyl complexes 12 and 13 (each single isomers). Protonation of 12 gave a
mixture of double bond isomers (both £/Z and positional), in situ hydrogenation affording 14 in 67% yield.
Insertion of benzaldehyde into 13 occurred with complete regiocontrol, but gave a mixtre of geometric- and
diastereo-isomers 15a-d. The 1,2-stereoselectivity was 4.8 : 1 erythro : threo, and the erythro isomer
consisted of a 4 ; 1 mixture of Z- 1o £~ geometric isomers!4, The predominant formation of the Z-alkene 15a
is the opposite selectivity to that obtained with unsubstituted or 2-substituted allyl systems.

Q
3 0 £
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Scheme 2. -A- = -CHgOCMBzOCHz-.

Functionalisation of the final carbon-zirconium bond. The final key to exploiting the tandem insertion
protocol described above is the successful functionalisation of the carbon-zirconium bond in the presumed
oxazirconacycle products of the carbonyl insertion reactions e.g. 16. Whereas N-bromosuccinimide gave a
moderate yield of the corresponding bromide 17, the iodinolytic and oxygenolytic work-ups gave excellent
overall yields of the funtionalised derivatives 18 and 19.

OH

H
i i. NBSorlor O, H
1~ — Ph
7o Ph i Aqueocus work-up Y 47 Y =Br, 42%
H Cp, H 18 Y =, 80%
16 19 Y =0H, 72%

Conclusion

The tandem allyl carbenoid insertion / carbonyl addition protocol for elaborating zirconacycles has been
extended in three important ways: allyl p-toluenesulphonates and N,N-diisopropylkcarbamates may be used as
sources of the metal carbenoid; 2-substituted allyl fragments, including some usefully functionalised for
further elaboration, insert to give stereodefined trisubstituted alkenes; and the final carbon-zirconium bond
from the metallacycles may be functionalised by oxygenation or halogenation.
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